
Warthog Documentation
Release 2.0.1

Smarter Travel

Jul 20, 2017

Contents

1 Features 3

2 Installation 5

3 Dependencies 7

4 Usage 9

5 Contents 11
5.1 Install . 11
5.2 Design . 13
5.3 Usage . 14
5.4 Library . 18
5.5 CLI Tool . 27
5.6 Development . 30
5.7 Releasing . 31
5.8 Changelog . 33

6 Indices and tables 37

Python Module Index 39

i

ii

Warthog Documentation, Release 2.0.1

Warthog is a simple Python client for interacting with A10 load balancers. The target use case is for safely removing
servers from pools in a load balancer during a deployment. It is available under the MIT license.

Contents 1

Warthog Documentation, Release 2.0.1

2 Contents

CHAPTER 1

Features

• Waiting for servers to finish all requests when being disabled

• Graceful handling of transient errors with optional retry logic

• Support for interacting with the load balancer API using SSL

• Works with Python 2.6, 2.7, 3.3, 3.4, 3.5, 3.6+

• Thread safety

3

Warthog Documentation, Release 2.0.1

4 Chapter 1. Features

CHAPTER 2

Installation

To install Warthog, simply run:

$ pip install warthog

5

Warthog Documentation, Release 2.0.1

6 Chapter 2. Installation

CHAPTER 3

Dependencies

• requests by Kenneth Reitz, version 2.6 or higher

• click by Armin Ronacher, version 3.3 or higher

7

https://github.com/kennethreitz/requests
https://github.com/mitsuhiko/click

Warthog Documentation, Release 2.0.1

8 Chapter 3. Dependencies

CHAPTER 4

Usage

Using the client is easy!

from warthog.api import WarthogClient

def install_my_project(server):
pass

client = WarthogClient('https://lb.example.com', 'user', 'password')

client.disable_server('app1.example.com')
install_my_project('app1.example.com')
client.enable_server('app1.example.com')

9

Warthog Documentation, Release 2.0.1

10 Chapter 4. Usage

CHAPTER 5

Contents

Install

The sections below will go over how to install the Warthog client from the Python Package Index (PyPI) or how to
install it from source. Both ways to install the client can be done globally on a machine or within the context of a
virtualenv.

Prerequisites

These instructions assume that you have the following things available.

• Python 2.6 - 2.7 or Python 3.3 - Python 3.6

• The virtualenv tool

• The pip tool

• Git

Requirements

Warthog depends on the following libraries / projects. If you have Python installed and use the pip tool for installation,
these should be installed automatically.

• Python 2.6 - 2.7 or Python 3.3 - Python 3.6

• The Requests library (HTTP library), version 2.6 or higher

• The Click library (command line interface library), version 3.3 or higher

11

https://virtualenv.pypa.io/en/latest/
https://pip.pypa.io/en/latest/
http://git-scm.com/
https://pip.pypa.io/en/latest/
http://docs.python-requests.org/en/latest/
http://click.pocoo.org/3/

Warthog Documentation, Release 2.0.1

Install from PyPI

If you’re planning on installing from PyPI, the process is pretty easy. Depending on how you want to use the client,
you have a few options.

Globally

You can install the client globally on a machine (using the system Python version) and it will be available for all users
of the machine. This will typically require root or administrator permissions.

$ pip install warthog

Virtual Environment

You can also install the client into a virtual environment. A virtual environment is a self-contained Python installation
into which you can install whatever you’d like without root or administrator permissions. Packages installed in this
environment will only be available in the context of that environment.

Create your new virtual environment
$ virtualenv my-warthog-install

Enter the virtual environment
$ source my-warthog-install/bin/activate

Install the Warthog client
$ pip install warthog

Install from Source

First you’ll need to get the source code of the client using Git.

$ git clone https://github.com/smarter-travel-media/warthog.git

Globally

Like installation from PyPI, installation from source can be done globally for all users of a machine. As above, this
will typically require root or administrator permissions.

$ cd warthog && pip install .

Virtual Environment

You can also install the client from source into a virtual environment.

Create your new virtual environment
$ virtualenv my-warthog-install

Enter the virtual environment
$ source my-warthog-install/bin/activate

12 Chapter 5. Contents

Warthog Documentation, Release 2.0.1

Install the client from the source checkout we made above
$ cd warthog && pip install .

Design

Some of the principals, design decisions, and limitations of the Warthog library are outlined below.

Purpose

The target use case of the Warthog client is safely disabling servers while each server is restarted or deployed to.
Because of this, Warthog has a very slim feature set. The client only exposes a small subset of operations available
through the HTTP API for A10 load balancers.

Node Level vs Group Level

When interacting with a server in a load balancer, there are typically two ways the server can be manipulated – at
the node level and at the group level. Interacting with a server at the node level means that it will be disabled for all
groups that the server belongs to. Interacting with a server at the group level means that the server may be active for
one group and disabled for others.

The Warthog library embraces the idea that nodes should be single purpose and not run multiple unrelated services.
Because of this, Warthog supports interacting with servers only at the node level, not the group level. When the status
of servers is queried, when servers are disabled, and when servers are enabled, all operations are at the node level.

Thread Safety

The main interfaces of the Warthog library (warthog.client.WarthogClient, warthog.client.
CommandFactory , and assorted classes in warthog.config) are thread safe. Each class will also include a
comment in the doc string that indicates if it is thread safe. The Warthog library makes use of Requests (for making
HTTP and HTTPS calls to the load balancer API) which is also thread safe.

SSL

The Warthog library supports interacting with a load balancer over HTTPS. By default when using SSL, certificates
will be verified, and TSLv1 will be explicitly used. If you wish to override either of these, you can do so when using
the warthog.client.WarthogClient or in your configuration file.

Versions

The Warthog library uses semantic versioning of the form major.minor.patch. All backwards incompatible
changes after version 1.0.0 will increment the major version number. All backwards incompatible changes prior to
version 1.0.0 will increment the minor version number.

Since this is a Python project, only the subset of the semantic versioning spec that is compatible with PEP-440 will be
used.

Compatible and incompatible changes are defined in terms of use of the Python module warthog.api and use of
the CLI program warthog. Meaning, code that makes use of the 1.0.0 version of warthog.api should not require
any changes to make use of the 1.1.0 version of warthog.api.

5.2. Design 13

http://docs.python-requests.org/en/latest/
http://docs.python-requests.org/en/latest/user/advanced/#ssl-cert-verification
http://semver.org/
https://www.python.org/dev/peps/pep-0440/

Warthog Documentation, Release 2.0.1

Alternatives

If your use case doesn’t fit the design or goals of the Warthog client, don’t despair, you have options!

The official client supports many more operations, though, at the price of a reduced level of abstraction.

You can also write your own client based on available documentation.

Usage

Descriptions and examples of how to make use of the Warthog library in common deploy-related situations are outlined
below.

Each of the examples will create a new instance of the Warthog client but, obviously, you do not need to do this in
your actual deploy process. In fact, you can even share the same client instance between multiple threads (it’s thread
safe and immutable).

Create a Client

Let’s start with the simplest possible thing you can do, just create a client instance.

from warthog.api import WarthogClient

client = WarthogClient('https://lb.example.com', 'deploy', 'my password')

In the code above, we create a new client instance with the following properties:

• It will connect to the load balancer at lb.example.com.

• It will connect over HTTPS and it will validate the certificate presented by the load balancer.

• It will use the user ‘deploy’ and the password ‘my password’ for authentication.

You’ll notice that we didn’t tell the client to validate the certificate presented by the load balancer but it will attempt
to do that anyway. That is because the client attempts to be safe by default. We’ll explain how to disable this later.

Create a Client Without SSL Verification

It might be the case that you use a self-signed certificate for HTTPS connections to your load balancer. This isn’t
ideal, but hey, it happens. To this end, you can configure the Warthog library to connect over HTTPS but not to verify
the SSL certificate.

This can be easily accomplished by passing an extra argument to the client when creating it.

from warthog.api import WarthogClient

client = WarthogClient(
'https://lb.example.com', 'deploy', 'my password', verify=False)

Create a Client With an Alternate SSL/TLS Version

If you need to use an alternate version of SSL or TLS to interact with your load balancer over HTTPS, you can
accomplish this by just passing an extra argument to the client when creating it.

14 Chapter 5. Contents

https://github.com/a10networks/acos-client
http://www.a10networks.com/products/axseries-aXAPI.php

Warthog Documentation, Release 2.0.1

import ssl
from warthog.api import WarthogClient

client = WarthogClient(
'https://lb.example.com', 'deploy', 'my password', ssl_version=ssl.PROTOCOL_TLSv1_

→˓2)

Create a Client From a Configuration File

Hopefully, the thought of sprinkling your load balancer credentials throughout your deploy scripts makes you nervous.
Luckily, there’s functionality in the Warthog library for reading configuration information about the load balancer
from an external file.

For more details about the format of this file and the default expected locations, see the CLI Tool section.

Let’s start by importing all the parts of the API that we’ll need.

from warthog.api import WarthogClient, WarthogConfigLoader

The WarthogConfigLoader class can load configuration from an explicit path or it can check several expected
locations for the file. Let’s start with loading an explicit path.

config_loader = WarthogConfigLoader(config_file='/etc/load-balancer.ini')

At this point, we haven’t actually loaded anything. Let’s do that next.

config_loader.initialize()
config_settings = config_loader.get_settings()

Now we’re talking! At this point, we have an immutable struct-like object (a named tuple in Python parlance) with all
the needed values for creating a new WarthogClient instance. Let’s do that now.

client = WarthogClient(
config_settings.scheme_host, config_settings.username, config_settings.password,
verify=config_settings.verify, ssl_version=config_settings.ssl_version)

Disable a Server

If you’re using the Warthog library as part of your deploy process, one of the first things you’ll need to do is safely
remove a server from receiving traffic in the load balancer. Let’s explore that below.

First, create the client instance that we’ll be using.

from warthog.api import WarthogClient

client = WarthogClient('https://lb.example.com', 'deploy', 'my password')

Next, we’ll mark a server as disabled in the load balancer, letting the client use retry logic to attempt to do this as
safely as possible. Note that the server is specified by hostname alone.

client.disable_server('app1.example.com')

You might notice that this method doesn’t return immediately, it takes a little bit. That’s because when we disable a
server by default we:

5.3. Usage 15

Warthog Documentation, Release 2.0.1

• Mark the server as disabled, attempting this a few times if there are errors making the disable request.

• Check the number of active connections to the server every few seconds, waiting until this number reaches zero.

• After waiting up to a maximum amount of time for the number of connections on the server to reach zero, check
if the server actually got disabled.

It might be the case that you don’t really need to wait for the number of connections to reach zero. If this is the case,
you can tell the client not to use retry logic or wait for the number of connections to drop to zero.

client.disable_server('app1.example.com', max_retries=0)

You can set max_retries to any number that makes sense for your deploy process. Each retry will be attempted two
seconds apart by default. See warthog.client.WarthogClient for more information about how to change
the time between retries.

Enable a Server

After you’ve deployed a new version of your application to a server or restarted it, you’ll need to enable the server
so that it starts receiving traffic from the load balancer. The method for doing this is very similar to how disabling a
server works. We’ll go into it more below.

First, create the client instance that we’ll be using.

from warthog.api import WarthogClient

client = WarthogClient('https://lb.example.com', 'deploy', 'my password')

Next, we’ll mark a server as enabled in the load balancer, letting the client use retry logic to make sure that the server
actually ends up enabled. Note that the server is specified by hostname alone.

client.enable_server('app1.example.com')

Similar to disabling a server, this method won’t return immediately. When we enable server by default we:

• Mark the server as enabled, attempting this a few times if there are errors making the enable request.

• Check the status of the server, waiting until it becomes ‘enabled’

• After waiting up to a maximum amount of time for the server to become enabled, check if the server actually
got enabled.

Similar to disabling a server, it might be the case that you don’t really need to wait for a server to become enabled. If
this is the case, you can tell the client not to use retry logic or wait for the server to become enabled.

client.enable_server('app1.example.com', max_retries=0)

You can set max_retries to any number that makes sense for your deploy process. Each retry will be attempted two
seconds apart by default. See warthog.client.WarthogClient for more information about how to change
the time between retries.

Non-Load Balanced Servers

If you use the same deployment process for servers that are in a load balancer and servers that aren’t in a load balancer,
you’ll have to deal with that when you use the Warthog library.

16 Chapter 5. Contents

Warthog Documentation, Release 2.0.1

When you attempt to enable, disable, or otherwise interact with a non-load balanced host through the load balancer
you’ll get an exception (warthog.exceptions.WarthogNoSuchNodeError) indicating that this is not a host
that the load balancer knows about. Let’s look at how to handle this situation below.

First, create the client instance that we’ll be using.

from warthog.api import WarthogClient, WarthogNoSuchNodeError

client = WarthogClient('https://lb.example.com', 'deploy', 'my password')

Next we’ll attempt to disable the server as part of our deploy process, but we’ll catch the exception raised when the
server isn’t recognized by the load balancer.

try:
client.disable_server('app1.example.com')

except WarthogNoSuchNodeError:
use_lb = False

else:
use_lb = True

Your deploy process goes here...

if use_lb:
client.enable_server('app1.example.com')

You can see above that we catch the exception that indicates this is not a host that the load balancer knows about. In
this case, we make sure to not attempt to enable the server after completing our deployment (or application restart,
etc.).

Already Disabled Servers

Sometimes a server gets marked as disabled in a load balancer outside of your deploy process. Maybe the server is
being used for load testing, maybe some maintenance is being performed. Whatever the reason, it’d be nice if your
deploy process recognized that this server is disabled and that it should not be put back into active use in the load
balancer. We’ll go over how to do this using the Warthog library below.

First, create the client instance that we’ll be using.

from warthog.api import WarthogClient, STATUS_DISABLED

client = WarthogClient('https://lb.example.com', 'deploy', 'my password')

Next, we’ll check the current status of the node when deploying to it.

already_disabled = STATUS_DISABLED == client.get_status('app1.example.com')

If the server was already disabled when we found it, we don’t need to disable it before deploying to it.

if not already_disabled:
client.disable_server('app1.example.com')

Your deploy process goes here...

if not already_disabled:
client.enable_server('app1.example.com')

You can see above that:

5.3. Usage 17

Warthog Documentation, Release 2.0.1

• If the server was disabled when we found it, we didn’t disable it before deploying and we didn’t enable it after
deploying.

• If the server was enabled when we found it, we disabled it before deploying and enabled it afterwards.

Suppressing SSL Warnings on older Python Versions

Warning: Disabling SSL warnings is done at your own risk.

Warthog depends on the Requests HTTP library. The Requests library in turn uses the Urllib3 library. If you are
using Warthog on Python 2.6 or a version of Python 2.7 prior to 2.7.9, Urllib3 will emit warnings due to a missing
SSL-related class. While this is a legitimate warning, it may be the case that you can’t upgrade the Python version
you are using and would rather not deal with the warning output. If that’s the case, you can do something like the
following.

import warnings
from requests.packages.urllib3.exceptions import InsecurePlatformWarning

warnings.filterwarnings("ignore", category=InsecurePlatformWarning)

from warthog.api import WarthogClient

client = WarthogClient('https://lb.example.com', 'deploy', 'my password')

You can find more documentation about the implications of this in the urllib3 docs.

Summary

Hopefully, these use cases and examples will give you a good idea of how to incorporate the Warthog library into your
deploy process.

Library

The public API of the Warthog library is maintained in the warthog.api module. This is done for the purposes of
clearly identifying which parts of the library are public and which parts are internal.

Functionality in the warthog.client, warthog.config, warthog.transport, and warthog.
exceptions modules is included in this module under a single, flat namespace. This allows a simple and consistent
way to interact with the library.

Note: When using the library, always make sure to access classes and functions through the warthog.api module,
not each individual module.

warthog.client

Simple interface for a load balancer with retry logic and intelligent draining of nodes.

18 Chapter 5. Contents

http://docs.python-requests.org/en/latest/
https://urllib3.readthedocs.org/en/latest/
https://urllib3.readthedocs.org/en/latest/security.html

Warthog Documentation, Release 2.0.1

class warthog.client.WarthogClient(scheme_host, username, password, verify=None,
ssl_version=None, network_retries=None, com-
mands=None)

Client for interacting with an A10 load balancer to get the status of nodes managed by it, enable them, and
disable them.

This class is thread safe.

Changed in version 0.8.0: Removed .disabled_context() method.

__init__(scheme_host, username, password, verify=None, ssl_version=None, network_retries=None,
commands=None)

Set the load balancer scheme/host/port combination, username and password to use for connecting and
authenticating with the load balancer.

Whether or not to verify certificates when using HTTPS may be toggled via the verify parameter. This
can enable you to use a self signed certificate for the load balancer while still using HTTPS.

The version of SSL or TLS to use may be specified as a ssl module protocol constant via the
ssl_version parameter.

The maximum number of times to retry network operations on transient errors can be specified via the
network_retries parameter.

If the command factory is not supplied, a default instance will be used. The command factory is responsible
for creating new requests.Session instances to be used by each command. It is typically only
necessary to override this for unit testing purposes.

Changed in version 0.9.0: Added the optional verify parameter to make use of self-signed certs easier.

Changed in version 0.10.0: Added the optional ssl_version parameter to make use of alternate SSL
or TLS versions easier.

Changed in version 2.0.0: Added the optional network_retries parameter to make use of retry logic
on transient network errors. A non-zero number of retries is used by default if this is not specified. Previ-
ously, no retries were attempted on transient network errors.

Changed in version 2.0.0: Removed the optional wait_interval parameter. This is now passed di-
rectly as an argument to enable_node() or disable_node() methods.

Parameters

• scheme_host (basestring) – Scheme, host, and port combination of the load bal-
ancer.

• username (basestring) – Name of the user to authenticate with.

• password (basestring) – Password for the user to authenticate with.

• verify (bool|None) – True to verify certificates when using HTTPS, False to skip
verification, None to use the library default. The default is to verify certificates.

• ssl_version (int|None) – ssl module constant for specifying which version of
SSL or TLS to use when connecting to the load balancer over HTTPS, None to use the
library default. The default is to use TLSv1.2.

• network_retries (int|None) – Maximum number of times to retry network opera-
tions on transient network errors. Default is to retry network operations a non-zero number
of times.

• commands (CommandFactory) – Factory instance for creating new commands for
starting and ending sessions with the load balancer.

5.4. Library 19

https://docs.python.org/2/library/ssl.html#module-ssl
https://docs.python.org/2/library/functions.html#basestring
https://docs.python.org/2/library/functions.html#basestring
https://docs.python.org/2/library/functions.html#basestring
https://docs.python.org/2/library/ssl.html#module-ssl

Warthog Documentation, Release 2.0.1

disable_server(server, max_retries=5, wait_interval=2.0)
Disable a server at the node level, optionally retrying when there are transient errors and waiting for the
number of active connections to the server to reach zero.

If max_retries is zero, no attempt will be made to wait until there are no active connections to the
server, the method will try a single time to disable the server and then return immediately.

Changed in version 2.0.0: Added the optional wait_interval parameter.

Parameters

• server (basestring) – Hostname of the server to disable

• max_retries (int) – Max number of times to sleep and retry while waiting for the
number of active connections to a server to reach zero.

• wait_interval (float) – How long (in seconds) to wait between each check to see
if the number of active connections to a server has reached zero.

Returns True if the server was disabled, false otherwise.

Return type bool

Raises

• warthog.exceptions.WarthogAuthFailureError – If authentication with
the load balancer failed when trying to establish a new session for this operation.

• warthog.exceptions.WarthogNoSuchNodeError – If the load balancer does
not recognize the given hostname.

• warthog.exceptions.WarthogApiError – If there are any other problems dis-
abling the given server.

enable_server(server, max_retries=5, wait_interval=2.0)
Enable a server at the node level, optionally retrying when there are transient errors and waiting for the
server to enter the expected, enabled state.

If max_retries is zero, no attempt will be made to wait until the server enters the expected, enabled
state, the method will try a single time to enable the server then return immediately.

Changed in version 2.0.0: Added the optional wait_interval parameter.

Parameters

• server (basestring) – Hostname of the server to enable

• max_retries (int) – Max number of times to sleep and retry while waiting for the
server to enter the “enabled” state.

• wait_interval (float) – How long (in seconds) to wait between each check to see
if the server has entered the “enabled” state.

Returns True if the server was enabled, false otherwise

Return type bool

Raises

• warthog.exceptions.WarthogAuthFailureError – If authentication with
the load balancer failed when trying to establish a new session for this operation.

• warthog.exceptions.WarthogNoSuchNodeError – If the load balancer does
not recognize the given hostname.

20 Chapter 5. Contents

https://docs.python.org/2/library/functions.html#basestring
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#bool
https://docs.python.org/2/library/functions.html#basestring
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#float
https://docs.python.org/2/library/functions.html#bool

Warthog Documentation, Release 2.0.1

• warthog.exceptions.WarthogApiError – If there are any other problems en-
abling the given server.

get_connections(server)
Get the current number of active connections to a server, at the node level.

The number of connections will be 0 or a positive integer.

Parameters server (basestring) – Hostname of the server to get the number of active
connections for.

Returns The number of active connections total for the node, across all groups the server is in.

Return type int

Raises

• warthog.exceptions.WarthogAuthFailureError – If authentication with
the load balancer failed when trying to establish a new session for this operation.

• warthog.exceptions.WarthogNoSuchNodeError – If the load balancer does
not recognize the given hostname.

• warthog.exceptions.WarthogApiError – If there are any other problems get-
ting the active connections for the given server.

New in version 0.4.0.

get_status(server)
Get the current status of the given server, at the node level.

The status will be one of the constants warthog.core.STATUS_ENABLED warthog.core.
STATUS_DISABLED, or warthog.core.STATUS_DOWN.

Parameters server (basestring) – Hostname of the server to get the status of.

Returns The current status of the server, enabled, disabled, or down.

Return type basestring

Raises

• warthog.exceptions.WarthogAuthFailureError – If authentication with
the load balancer failed when trying to establish a new session for this operation.

• warthog.exceptions.WarthogNoSuchNodeError – If the load balancer does
not recognize the given hostname.

• warthog.exceptions.WarthogApiError – If there are any other problems get-
ting the status of the given server.

class warthog.client.CommandFactory(transport_factory)
Factory for getting new warthog.core command instances that each perform some type of request against
the load balancer API.

It is typically not required for user code to instantiate this class directly unless you have special requirements
and need to inject a custom transport_factory method.

This class is thread safe.

__init__(transport_factory)
Set the a factory that will create new HTTP Sessions instances to be used for executing commands.

Parameters transport_factory (callable) – Callable for creating new Session in-
stances for executing commands.

5.4. Library 21

https://docs.python.org/2/library/functions.html#basestring
https://docs.python.org/2/library/functions.html#int
https://docs.python.org/2/library/functions.html#basestring
https://docs.python.org/2/library/functions.html#basestring
https://docs.python.org/2/library/functions.html#callable

Warthog Documentation, Release 2.0.1

get_active_connections(scheme_host, session_id, server)
Get a new command to get the number of active connections to a server.

Parameters

• scheme_host (basestring) – Scheme, host, and port combination of the load bal-
ancer.

• session_id (basestring) – Previously authenticated session ID.

• server (basestring) – Host name of the server to get the number of active connec-
tions to.

Returns A new command to get active connections to a server.

Return type warthog.core.NodeActiveConnectionsCommand

get_disable_server(scheme_host, session_id, server)
Get a new command to disable a server at the node level.

Parameters

• scheme_host (basestring) – Scheme, host, and port combination of the load bal-
ancer.

• session_id (basestring) – Previously authenticated session ID.

• server (basestring) – Host name of the server to disable.

Returns A new command to disable a server.

Return type warthog.core.NodeDisableCommand

get_enable_server(scheme_host, session_id, server)
Get a new command to enable a server at the node level.

Parameters

• scheme_host (basestring) – Scheme, host, and port combination of the load bal-
ancer.

• session_id (basestring) – Previously authenticated session ID.

• server (basestring) – Host name of the server to enable.

Returns A new command to enable a server.

Return type warthog.core.NodeEnableCommand

get_server_status(scheme_host, session_id, server)
Get a new command to get the status (enabled / disabled) of a server.

Parameters

• scheme_host (basestring) – Scheme, host, and port combination of the load bal-
ancer.

• session_id (basestring) – Previously authenticated session ID.

• server (basestring) – Host name of the server to get the status of.

Returns A new command to get the status of a server.

Return type warthog.core.NodeStatusCommand

get_session_end(scheme_host, session_id)
Get a new command instance to close an existing session.

22 Chapter 5. Contents

https://docs.python.org/2/library/functions.html#basestring
https://docs.python.org/2/library/functions.html#basestring
https://docs.python.org/2/library/functions.html#basestring
https://docs.python.org/2/library/functions.html#basestring
https://docs.python.org/2/library/functions.html#basestring
https://docs.python.org/2/library/functions.html#basestring
https://docs.python.org/2/library/functions.html#basestring
https://docs.python.org/2/library/functions.html#basestring
https://docs.python.org/2/library/functions.html#basestring
https://docs.python.org/2/library/functions.html#basestring
https://docs.python.org/2/library/functions.html#basestring
https://docs.python.org/2/library/functions.html#basestring

Warthog Documentation, Release 2.0.1

Parameters

• scheme_host (basestring) – Scheme, host, and port combination of the load bal-
ancer.

• session_id (basestring) – Previously authenticated session ID.

Returns A new command to close a session.

Return type warthog.core.SessionEndCommand

get_session_start(scheme_host, username, password)
Get a new command instance to start a session.

Parameters

• scheme_host (basestring) – Scheme, host, and port combination of the load bal-
ancer.

• username (basestring) – Name of the user to authenticate with.

• password (basestring) – Password for the user to authenticate with.

Returns A new command to start a session.

Return type warthog.core.SessionStartCommand

warthog.config

Load and parse configuration for a client from an INI-style file.

class warthog.config.WarthogConfigLoader(config_file=None, encoding=None,
path_resolver=None, config_parser=None)

Load and parse configuration from an INI-style WarthogClient configuration file.

If a specific configuration file is given during construction, this file will be used instead of checking the multiple
possible default locations for configuration files. The default locations to be checked are an ordered list of paths
contained in DEFAULT_CONFIG_LOCATIONS.

Note: When checking for configuration files in default locations, each file will only be checked to see if it
exists. It will not be checked to see if the file is readable or correctly formatted.

This class is thread safe.

New in version 0.4.0.

Changed in version 0.6.0: Loading, parsing, and access of configuration settings is now thread safe.

Changed in version 0.6.0: The .parse_configuration() method has been removed and the functionality has been
split into the .initialize() and .get_settings() methods.

Changed in version 0.10.0: The WarthogConfigLoader.__init__() method no longer directly takes a
standard library INI parser as an option parameter, instead it now takes a WarthogConfigParser instance as an
optional parameter.

Changed in version 0.10.0: See Changelog or CLI Tool for details about the changes to configuration file format.

__init__(config_file=None, encoding=None, path_resolver=None, config_parser=None)
Optionally, set a specific configuration file, the encoding of the file, resolver to determine the configuration
file to use, and custom configuration parser implementation.

5.4. Library 23

https://docs.python.org/2/library/functions.html#basestring
https://docs.python.org/2/library/functions.html#basestring
https://docs.python.org/2/library/functions.html#basestring
https://docs.python.org/2/library/functions.html#basestring
https://docs.python.org/2/library/functions.html#basestring

Warthog Documentation, Release 2.0.1

By default, multiple locations will be checked for a configuration file, the file is assumed to use UTF-8
encoding, and an

Parameters

• config_file (str|unicode) – Optional explicit path to a configuration file to use.

• encoding (str|unicode) – Encoding to use for reading the configuration file. De-
fault is UTF-8

• path_resolver (callable) – Callable that accepts a single argument (the explicit
configuration file path to use) and determines what configuration file to use. It is typically
only necessary to set this parameter for unit testing purposes.

• config_parser (WarthogConfigParser) – Optional configuration parser to use
for reading and parsing the expected INI format for a Warthog configuration file. It is
typically only necessary to set this parameter for unit testing purposes.

get_settings()
Get previously loaded and parsed configuration settings, raise an exception if the settings have not already
been loaded and parsed.

New in version 0.6.0.

Returns Struct of configuration settings for the Warthog client

Return type WarthogConfigSettings

Raises RuntimeError – If a configuration file has not already been loaded and parsed.

initialize()
Load and parse a configuration an INI-style configuration file.

The values parsed will be stored as a WarthogConfigSettings instance that may be accessed with
the get_settings() method.

New in version 0.6.0.

Changed in version 0.8.0: Errors locating or parsing configuration files now result in Warthog-specific
exceptions (warthog.exceptions.WarthogConfigError) instead of ValueError, IOError, or
RuntimeError.

Returns Fluent interface

Return type WarthogConfigLoader

Raises

• warthog.exceptions.WarthogNoConfigFileError – If no explicit configu-
ration file was given and there were no configuration files in any of the default locations
checked or if the configuration file could not be opened or read for some reason.

• warthog.exceptions.WarthogMalformedConfigFileError – If the con-
figuration file was malformed such has missing the required ‘warthog’ section or any of
the expected values. See the CLI Tool section for more information about the expected
configuration settings.

class warthog.config.WarthogConfigSettings(scheme_host, username, password, verify,
ssl_version)

password
Alias for field number 2

scheme_host
Alias for field number 0

24 Chapter 5. Contents

https://docs.python.org/2/library/functions.html#callable

Warthog Documentation, Release 2.0.1

ssl_version
Alias for field number 4

username
Alias for field number 1

verify
Alias for field number 3

warthog.transport

Methods to configure how to interact with the load balancer API over HTTP or HTTPS.

warthog.transport.get_transport_factory(verify=None, ssl_version=None, retries=None)
Get a new callable that returns requests.Session instances that have been configured according to the
given parameters.

requests.Session instances are then used for interacting with the API of the load balancer over HTTP or
HTTPS.

Changed in version 0.10.0: Using the requests/urllib3 default is no longer an option. Passing a None value for
ssl_version will result in using the Warthog default (TLS v1).

Changed in version 2.0.0: Added the retries parameter and default it to a number greater than zero.

Parameters

• verify (bool|None) – Should SSL certificates by verified when connecting over
HTTPS? Default is True. If you have chosen not to verify certificates warnings about
this emitted by the requests library will be suppressed.

• ssl_version (int|None) – Explicit version of SSL to use for HTTPS connections to
an A10 load balancer. The version is a constant as specified by the ssl module. The default
is TLSv1.

• retries (int|None) – The maximum number of times to retry operations on transient
network errors. Note this only applies to cases where we haven’t yet sent any data to the
server (e.g. connection errors, DNS errors, etc.)

Returns A callable to return new configured session instances for making HTTP(S) requests

Return type callable

warthog.exceptions

Exceptions raised by the Warthog client or library.

exception warthog.exceptions.WarthogApiError(msg, api_msg=None, api_code=None)
Bases: warthog.exceptions.WarthogError

Base for errors raised in the course of interacting with the load balancer.

__init__(msg, api_msg=None, api_code=None)

exception warthog.exceptions.WarthogAuthFailureError(msg, api_msg=None,
api_code=None)

Bases: warthog.exceptions.WarthogApiError

The credentials for authentication are invalid.

5.4. Library 25

https://docs.python.org/2/library/ssl.html#module-ssl
https://docs.python.org/2/library/functions.html#callable

Warthog Documentation, Release 2.0.1

exception warthog.exceptions.WarthogConfigError(msg)
Bases: warthog.exceptions.WarthogError

Base for errors raised while parsing or loading configuration.

exception warthog.exceptions.WarthogError(msg)
Bases: exceptions.Exception

Base for all errors raised by the Warthog library.

__init__(msg)

exception warthog.exceptions.WarthogInvalidSessionError(msg, api_msg=None,
api_code=None)

Bases: warthog.exceptions.WarthogApiError

The session ID or auth token used while performing some action is unrecognized.

exception warthog.exceptions.WarthogMalformedConfigFileError(msg, miss-
ing_section=None,
missing_option=None)

Bases: warthog.exceptions.WarthogConfigError

The configuration file is missing required sections or fields.

__init__(msg, missing_section=None, missing_option=None)

exception warthog.exceptions.WarthogNoConfigFileError(msg, locations_checked=None)
Bases: warthog.exceptions.WarthogConfigError

No configuration file could be found.

__init__(msg, locations_checked=None)

exception warthog.exceptions.WarthogNoSuchNodeError(msg, api_msg=None,
api_code=None, server=None)

Bases: warthog.exceptions.WarthogNodeError

The host being operated on is unrecognized.

exception warthog.exceptions.WarthogNodeError(msg, api_msg=None, api_code=None,
server=None)

Bases: warthog.exceptions.WarthogApiError

Base for errors specific to operating on some individual node.

__init__(msg, api_msg=None, api_code=None, server=None)

exception warthog.exceptions.WarthogNodeStatusError(msg, api_msg=None,
api_code=None, server=None)

Bases: warthog.exceptions.WarthogNodeError

There was some error while getting the status of a node.

exception warthog.exceptions.WarthogPermissionError(msg, api_msg=None,
api_code=None, server=None)

Bases: warthog.exceptions.WarthogNodeError

The credentials lack required permissions to perform an operation.

New in version 1.999.0.

26 Chapter 5. Contents

https://docs.python.org/2/library/exceptions.html#exceptions.Exception

Warthog Documentation, Release 2.0.1

CLI Tool

Since version 0.4.0 Warthog includes a CLI client for using to interact with a load balancer in addition to the library
client. The CLI client supports most of the same operations as the warthog.client.WarthogClient class.
The CLI client has the advantage of working from any type of deploy process, not just Python ones.

Configuration and usage of the CLI client is described below.

Usage

Usage of the Warthog CLI client is based on running various commands. Commands are specified as arguments to the
warthog program. Some of the commands take additional arguments or options. The most basic usage looks like
the following.

$ warthog default-config

In the example above, we run the default-config command with no options or arguments. The
default-config simply prints an example configuration file for the client.

A slightly more involved example might involve passing an argument or option to the command. The example below
explores this.

$ warthog status --help

The this example passes the --help option to the status command. This causes the Warthog CLI client to print
out the details on using the status command.

$ warthog status app1.example.com

This example passes the argument app1.example.com to the status command. In this case, the CLI client
prints the status of app1.example.com (something like enabled or disabled).

Command-line Options

The following options are supported by the root warthog script. For more information about a specific command,
use the --help option with that command.

--help
Display basic usage information about the Warthog CLI client and exit.

--version
Display the version of Warthog and exit.

--config <file>
Set an explicit path to the configuration file for the Warthog CLI client instead of relying on the multiple default
locations that are searched. If this option is specified all other potential locations for files are ignored.

--enable-platform-warning
Enable warnings from underlying libraries when running on older Python versions (2.6 or 2.7 < 2.7.9) known to
cause intermittent failures of SSL/TLS connections. The default is to suppress these warnings.

Commands

status <server>
Get the status of the given server (by host name). The status will be one of enabled, disabled, or down. If

5.5. CLI Tool 27

Warthog Documentation, Release 2.0.1

the server is not in any load balancer pools an error message will be displayed instead and the exit code will be
non-zero.

Example:

$ warthog status app1.example.com
enabled

connections <server>
Get the number of active connections to the given server (by host name). The number of active connections will
be an integer greater than or equal to zero. If the server is not in any load balancer pools an error message will
be displayed instead and the exit code will be non-zero.

Example:

$ warthog connections app1.example.com
42

disable <server>
Disable the given server (by host name). The CLI client will wait until the number of active connections to the
server reaches zero before returning. If the server is not in any load balancer pools or was not able to be disabled
before the CLI client gave up waiting an error message will be displayed and the exit code will be non-zero.
The number of retries attempted is governed by the default value in warthog.client.WarthogClient.
disable_server().

Example:

$ warthog disable app1.example.com

enable <server>
Enable the given server (by host name). The CLI client will wait until the the server enters the enabled state.
If the server is not in any load balancer pools or did not enter the enabled state before the CLI client gave up
waiting an error message will be displayed and the exit code will be non-zero. The number of retires attempted
is governed by the default value in warthog.client.WarthogClient.enable_server().

Example:

$ warthog enable app1.example.com

default-config
Print the contents of an example INI-style configuration file for the Warthog CLI client. The output from this
command can be piped into a file and then edited for your particular load balancer host and credentials.

Example:

$ warthog default-config
[warthog]
scheme_host = https://lb.example.com
username = username
password = password
verify = yes
ssl_version = TLSv1

config-path
Print (one path per line) each of the various locations that a configuration file will be searched for if not specified
with the --config option.

Example:

28 Chapter 5. Contents

Warthog Documentation, Release 2.0.1

$ warthog config-path
/etc/warthog/warthog.ini
/etc/warthog.ini
/usr/local/etc/warthog/warthog.ini
/usr/local/etc/warthog.ini
/home/user/.warthog.ini
/home/user/something/warthog.ini

Configuration

Up till now we’ve mentioned that the Warthog CLI client uses a configuration file but we haven’t really gotten into
what exactly that configuration file is or what it looks like. Let’s go over that now.

In order to interact with your load balancer over the HTTP or HTTPS API, the Warthog client needs a few pieces of
information.

• The scheme, host (or IP), and port that it should use for talking to the load balancer.

• The username it should use for authentication with the load balancer.

• The password associated with the username it should use.

• Whether or not SSL certificates should be validated (similar to how your browser validates them) if using
HTTPS.

• The version of SSL / TLS to use if using HTTPS.

Syntax

The Warthog CLI client uses an INI-style configuration file. The format is shown below.

[warthog]
scheme_host = https://lb.example.com
username = username
password = password
verify = yes
ssl_version = TLSv1

scheme_host Combination of scheme (either ‘http’ or ‘https’), host name (or IP), and port number. This is used to connect to the load balancer. Some examples of valid values: http://10.1.2.3:8080, https://10.1.2.3:8443, https://lb.example.com:8443, or http://lb.example.com. This setting is required.
username The username to use for authentication with the load balancer. Some examples of valid values: admin, deploy, svc. This setting is required.
password Password to use along with the username for authentication with the load balancer. This setting is required.
verify If connecting to the load balancer over HTTPS, boolean to indicate if the SSL certificate should be validated. This may be any boolean value recognized by the Python INI parser. Examples of valid true values include 1, yes, true, and on. Examples of valid false values include 0, no, false, and off. This setting is optional.
ssl_version SSL / TLS version to use when connecting to the load balancer over HTTPS. This version must be supported by your Python install (i.e. there must be a PROTOCOL constant corresponding to it in ssl). Potential supported values are SSLv23, TLSv1, TLSv1_1, or TLSv1_2. This setting is optional.

Changed in version 0.10.0: The verify parameter is now optional. If not specified the Warthog library default will
be used (True to verify certificates).

Changed in version 0.10.0: The ssl_version parameter is now supported and optional. If not specified the Warthog
library default will be used (TLSv1).

Location

If the --config option is not given to the Warthog CLI client, several locations will be checked for a configuration
file to use. The logic for deciding which locations to check is described below. The locations will be checked in order
until one that exists is found.

5.5. CLI Tool 29

http://en.wikipedia.org/wiki/INI_file
https://docs.python.org/2/library/configparser.html#ConfigParser.RawConfigParser.getboolean
https://docs.python.org/2/library/ssl.html#module-ssl

Warthog Documentation, Release 2.0.1

Note: Searching for a configuration file will stop after the first one that exists, NOT the first one that can be read and
contains valid values.

1. /etc/warthog/warthog.ini

2. /etc/warthog.ini

3. $PREFIX/etc/warthog/warthog.ini where $PREFIX is the value of sys.prefix in Python

4. $PREFIX/etc/warthog.ini where $PREFIX is the value of sys.prefix in Python

5. $HOME/.warthog.ini where $HOME is the home directory of the user running the script

6. $CWD/warthog.ini where $CWD is the current working directory when the script is run

If none of these paths exist and the --config option is not given, the CLI client will abort.

Development

Have a great idea for a new feature? Want to fix a bug? Then, this guide is for you!

Prerequisites

These instructions assume that you have the following things available.

• Python 2.6 - 2.7 or Python 3.3 - Python 3.6

• The virtualenv tool

• The pip tool

• Git

Environment Setup

First, fork the Warthog Client on GitHub.

Check out your fork of the source code.

$ git clone https://github.com/you/warthog.git

Create and set up a branch for your awesome new feature or bug fix.

$ cd warthog
$ git checkout -b feature-xyz
$ git push origin feature-xyz:feature-xyz
$ git branch -u origin/feature-xyz

Set up a virtual environment.

$ virtualenv env

Enter the virtualenv install required dependencies.

30 Chapter 5. Contents

https://docs.python.org/2/library/sys.html#sys.prefix
https://docs.python.org/2/library/sys.html#sys.prefix
https://virtualenv.pypa.io/en/latest/
https://pip.pypa.io/en/latest/
http://git-scm.com/
https://help.github.com/articles/fork-a-repo

Warthog Documentation, Release 2.0.1

$ source env/bin/activate
$ pip install -r requirements.txt
$ pip install -r requirements-dev.txt

Install the checkout in “development mode”.

$ pip install -e .

Contributing

Next, code up your feature or bug fix and create a pull request. Some things to keep in mind when submitting a pull
request are listed below.

• Your pull request should be a single commit that adds only a single feature or fixes only a single bug. Take a look
at this post that describes squashing all your commits into only a single commit, or, the Github documentation
on rebasing.

• If you’ve added a new feature, it should have unit tests. If you’ve fixed a bug, it should definitely have unit tests.

• Your code should follow the Python Style Guide and/or match the surrounding code.

If you’re new to Git or GitHub, take a look at the GitHub help site.

Please keep in mind however, that since the Warthog Client has a very specific purpose, pull requests that are deter-
mined to be out of scope may not be merged.

Useful Commands

As you do development on the Warthog Client, the following commands might come in handy. Note that all these
commands assume you are in the context of the virtualenv you set up earlier.

Build the documentation.

$ fab clean docs

Run the unit tests for Python 2.7, 3.3, and 3.4.

$ tox test

Run the unit tests for a specific Python version.

$ TOXENV=py27 tox test

Run the PyLint tool to find bugs or places where best practices are not being followed.

$ fab lint

Check how much of the code in the Warthog client is covered by unit tests.

$ fab coverage

Releasing

5.7. Releasing 31

https://help.github.com/articles/be-social/#pull-requests
http://blog.steveklabnik.com/posts/2012-11-08-how-to-squash-commits-in-a-github-pull-request
https://help.github.com/articles/using-git-rebase/
https://www.python.org/dev/peps/pep-0008/
https://help.github.com/

Warthog Documentation, Release 2.0.1

Note: The intended audience for this section is the Warthog library maintainers. If you are a user of the Warthog
library, you don’t need worry about this.

These are the steps for releasing a new version of the Warthog library. The steps assume that all the changes you want
to release have already been merged to the master branch. The steps further assumed that you’ve run all the unit
tests and done some ad hoc testing of the changes.

Versioning

The canonical version number for the Warthog library is contained in the file warthog/__init__.py (relative to
the project root). Increment this version number based on the nature of the changes being included in this release.

Do not commit.

Change Log

Update the change log to include all relevant changes since the last release. Make sure to note which changes are
backwards incompatible.

Update the date of the most recent version to today’s date.

Commit the version number and change log updates.

Tagging

Create a new tag based on the new version of the Warthog library.

$ git tag 0.5.0

Push the committed changes and new tags.

$ fab push push_tags

Building

Clean the checkout before trying to build.

$ fab clean

Build source and binary distributions and upload them.

$ fab pypi

Update PyPI

If the package metadata has changed since the last release, login to PyPI and update the description field or anything
else that needs it.

https://pypi.python.org/pypi/warthog

32 Chapter 5. Contents

https://pypi.python.org/pypi/warthog

Warthog Documentation, Release 2.0.1

Changelog

2.0.1 - 2017-07-20

• Disable SNI related SSL warnings from urllib3 when running the CLI tool on Python 2.6. This can still be
enabled with the --enable-platform-warnings switch if desired by the caller.

2.0.0 - 2017-06-29

• Breaking change - The Warthog library now only supports v3 of the A10 load balancer REST API. If you need
to interact with a load balancer that uses v2 of the A10 REST API you are advised to use Warthog 1.1.0.

• Breaking change - Removed the wait_interval parameter from warthog.client.
WarthogClient. This setting can now be specified directly for calls to enable_node and
disable_node methods.

• Breaking change - Removed WarthogAuthCloseError, WarthogNodeDisableError,
WarthogNodeEnableError. Places where these exceptions were previously raised will now raise
warthog.exceptions.WarthogApiError.

• Network operations are now retried on transient errors per #17.

1.999.2 - 2017-06-28

Note: This version is only meant to be used internally at SmarterTravel as a transition step between two load balancers.
As such, it is not available on PyPI.

• Rename warthog.core3 to warthog.core

• Remove deprecated exceptions in warthog.exceptions: WarthogAuthCloseError,
WarthogNodeDisableError, WarthogNodeEnableError.

1.999.1 - 2017-04-06

Note: This version is only meant to be used internally at SmarterTravel as a transition step between two load balancers.
As such, it is not available on PyPI.

• Add support for new Python SSL constant PROTOCOL_TLS to allow negotiation of SSL versions between the
client and server.

1.999.0 - 2017-04-05

Note: This version is only meant to be used internally at SmarterTravel as a transition step between two load balancers.
As such, it is not available on PyPI.

• Add new warthog.core3 module for support of A10 V3 APIs in parallel with the existing core module as a
transition to the new API per #8.

5.8. Changelog 33

https://github.com/smarter-travel-media/warthog/issues/17
https://github.com/smarter-travel-media/warthog/issues/8

Warthog Documentation, Release 2.0.1

• Make sure to pass ssl_version to client created in CLI tool per #9.

• Default to use of TLS version 1.2 when not otherwise specified.

1.1.0 - 2016-01-21

• Disable InsecurePlatformWarning from urllib3 by default for the CLI client since this makes
it unusable CentOS / Red Hat 6. This warning can be re-enabled for the CLI client with the
--enable-platform-warning flag. Note that this does not change the behavior of the Warthog library at
all, only the CLI client. Fixes #5.

1.0.0 - 2015-12-21

• This is the first stable release of Warthog. From this point on, all breaking changes will only be made in major
version releases. This release is functionally the same as the 0.10.0 release.

0.10.0 - 2015-10-05

• Add option to warthog.client.WarthogClient to allow alternate SSL or TLS versions to be used
easily. Fixes #6.

• Breaking change - Passing a None value to warthog.transport.get_transport_factory()
for the ssl_version parameter will now use the Warthog library default (TLSv1) instead of letting re-
quests/urllib3 pick the default.

• Add support for specifying an optional ssl_version parameter in INI configuration files. Fixes #4.

• Change verify to be optional in INI configuration files.

0.9.1 - 2015-08-07

• Fix bug where a config file needed to be specified by the CLI client even when not required (such as when
displaying help). Fixes #3.

0.9.0 - 2015-06-04

• Replace examples documentation with more in depth usage guide (Usage).

• Add documentation for performing a release of the library (Releasing).

• Move enabling/disabling certificate verification to the warthog.client.WarthogClient class so that
using self-signed certificates is less of a hassle and requires less code.

0.8.3 - 2015-03-18

• Dependency on requests updated to version 2.6.0.

• Packaging fixes (use twine for uploads to PyPI, stop using the setup.py register command).

• Minor documentation updates.

34 Chapter 5. Contents

https://github.com/smarter-travel-media/warthog/issues/9
https://github.com/smarter-travel-media/warthog/issues/5
https://github.com/smarter-travel-media/warthog/issues/6
https://github.com/smarter-travel-media/warthog/issues/4
https://github.com/smarter-travel-media/warthog/issues/3
https://github.com/kennethreitz/requests

Warthog Documentation, Release 2.0.1

0.8.2 - 2015-02-09

• Small documentation fixes.

• Add project logo to documentation.

• Dependency on requests updated to version 2.5.1.

0.8.1 - 2014-12-22

• Fixed small documentation issues and changed change log dates.

0.8.0 - 2014-12-22

• Breaking change - Changed errors raised by warthog.config.WarthogConfigLoader to be sub-
classes of warthog.exceptions.WarthogConfigError instead of using errors from the standard li-
brary (ValueError, IOError, RuntimeError).

• Breaking change - Removed the warthog.client.WarthogClient.disabled_context context
manager method since the level of abstraction didn’t match the rest of the methods in the client.

• Breaking change - Removed all command classes in warthog.core from the public API (warthog.api).
Users wishing to use them may do so at their own risk.

• Change all server-specific exceptions to be based on warthog.exceptions.WarthogNodeError.

• Improve error handling for CLI client when the configuration file contains an invalid load balancer host (or port,
etc.).

• Bundled 3rd-party libs moved to the warthog.packages package.

• Dependency on requests updated to version 2.5.0.

0.7.0 - 2014-11-24

• Breaking change - Changed error hierarchy so that all errors related to interacting with the load bal-
ancer now extend from warthog.exceptions.WarthogApiError. The root error class warthog.
exceptions.WarthogError no longer contains any functionality specific to making API requests to the
load balancer.

0.6.0 - 2014-11-20

• Breaking change - Removed warthog.config.WarthogConfigLoader.
parse_configuration() method and split the functionality into two new methods. Additionally,
the class is now thread safe.

• Renamed “Usage” documentation section to “Examples”.

0.5.0 - 2014-11-03

• Breaking change - Changed all command .send() methods in warthog.core to not take any arguments
to given them a consistent interface.

• Examples documentation improvements.

5.8. Changelog 35

https://github.com/kennethreitz/requests
https://github.com/kennethreitz/requests

Warthog Documentation, Release 2.0.1

• Various code quality improvements.

0.4.2 - 2014-10-29

• Documentation improvements (Development).

• Test coverage improvements in warthog.cli.

0.4.1 - 2014-10-23

• Added CLI tool for using the Warthog Client. See CLI Tool.

• Added warthog.client.WarthogClient.get_connections() method for getting the number of
active connections to a server.

• Added Exceptions in warthog.exceptions to the public api in warthog.api.

• Added config parsing module warthog.config and add it to the public api in warthog.api.

0.3.1 - 2014-10-17

• Changed setup.py script to not require setuptools.

0.3.0 - 2014-10-16

• Added Install documentation.

• Changed authentication request (warthog.core.SessionStartCommand) to use POST instead of GET
though there doesn’t seem to be any actual difference as far as the load balancer API is concerned.

0.2.0 - 2014-10-14

• Added Design, Examples, and Library documentation.

• Added test to ensure exported API is consistent.

0.1.0 - 2014-10-11

• Initial release

36 Chapter 5. Contents

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

37

Warthog Documentation, Release 2.0.1

38 Chapter 6. Indices and tables

Python Module Index

w
warthog.client, 18
warthog.config, 23
warthog.exceptions, 25
warthog.transport, 25

39

Warthog Documentation, Release 2.0.1

40 Python Module Index

Index

Symbols
–config <file>

command line option, 27
–enable-platform-warning

command line option, 27
–help

command line option, 27
–version

command line option, 27
__init__() (warthog.client.CommandFactory method), 21
__init__() (warthog.client.WarthogClient method), 19
__init__() (warthog.config.WarthogConfigLoader

method), 23
__init__() (warthog.exceptions.WarthogApiError

method), 25
__init__() (warthog.exceptions.WarthogError method),

26
__init__() (warthog.exceptions.WarthogMalformedConfigFileError

method), 26
__init__() (warthog.exceptions.WarthogNoConfigFileError

method), 26
__init__() (warthog.exceptions.WarthogNodeError

method), 26

C
command line option

–config <file>, 27
–enable-platform-warning, 27
–help, 27
–version, 27
config-path, 28
connections <server>, 28
default-config, 28
disable <server>, 28
enable <server>, 28
status <server>, 27

CommandFactory (class in warthog.client), 21
config-path

command line option, 28

connections <server>
command line option, 28

D
default-config

command line option, 28
disable <server>

command line option, 28
disable_server() (warthog.client.WarthogClient method),

19

E
enable <server>

command line option, 28
enable_server() (warthog.client.WarthogClient method),

20

G
get_active_connections()

(warthog.client.CommandFactory method),
21

get_connections() (warthog.client.WarthogClient
method), 21

get_disable_server() (warthog.client.CommandFactory
method), 22

get_enable_server() (warthog.client.CommandFactory
method), 22

get_server_status() (warthog.client.CommandFactory
method), 22

get_session_end() (warthog.client.CommandFactory
method), 22

get_session_start() (warthog.client.CommandFactory
method), 23

get_settings() (warthog.config.WarthogConfigLoader
method), 24

get_status() (warthog.client.WarthogClient method), 21
get_transport_factory() (in module warthog.transport), 25

I
initialize() (warthog.config.WarthogConfigLoader

41

Warthog Documentation, Release 2.0.1

method), 24

P
password (warthog.config.WarthogConfigSettings at-

tribute), 24

S
scheme_host (warthog.config.WarthogConfigSettings at-

tribute), 24
ssl_version (warthog.config.WarthogConfigSettings at-

tribute), 24
status <server>

command line option, 27

U
username (warthog.config.WarthogConfigSettings at-

tribute), 25

V
verify (warthog.config.WarthogConfigSettings attribute),

25

W
warthog.client (module), 18
warthog.config (module), 23
warthog.exceptions (module), 25
warthog.transport (module), 25
WarthogApiError, 25
WarthogAuthFailureError, 25
WarthogClient (class in warthog.client), 18
WarthogConfigError, 25
WarthogConfigLoader (class in warthog.config), 23
WarthogConfigSettings (class in warthog.config), 24
WarthogError, 26
WarthogInvalidSessionError, 26
WarthogMalformedConfigFileError, 26
WarthogNoConfigFileError, 26
WarthogNodeError, 26
WarthogNodeStatusError, 26
WarthogNoSuchNodeError, 26
WarthogPermissionError, 26

42 Index

	Features
	Installation
	Dependencies
	Usage
	Contents
	Install
	Design
	Usage
	Library
	CLI Tool
	Development
	Releasing
	Changelog

	Indices and tables
	Python Module Index

